A Solution of Two-Dimensional Magnetohydrodynamic Flow Using the Finite Volume Method
نویسندگان
چکیده
This paper presents the two dimensional numerical modeling of the coupling electromagnetic-hydrodynamic phenomena in a conduction MHD pump using the Finite volume Method. Magnetohydrodynamic problems are, thus, interdisciplinary and coupled, since the effect of the velocity field appears in the magnetic transport equations, and the interaction between the electric current and the magnetic field appears in the momentum transport equations. The resolution of the Maxwell's and Navier Stokes equations is obtained by introducing the magnetic vector potential A, the vorticity and the stream function . The flux density, the electromagnetic force, and the velocity are graphically presented. Also, the simulation results agree with those obtained by Ansys Workbench Fluent software.
منابع مشابه
Pressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique
Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...
متن کاملAdaptive Solution of Steady Two Dimensional Flow on an Unstructured Grid
Two-dimensional Euler equations have been solved on an unstructured grid. An upwind finite volume scheme, based on Roes flux difference splitting method, is used to discretize the equations. Using advancing front method, an initial Delaunay triangulation has been made. The adaptation procedure involves mesh enrichment coarsening in regions of flow with high low gradients of flow properties, acc...
متن کاملAdaptive Solution of Steady Two Dimensional Flow on an Unstructured Grid
Two-dimensional Euler equations have been solved on an unstructured grid. An upwind finite volume scheme, based on Roe's flux difference splitting method, is used to discretize the equations. Using advancing front method, an initial Delaunay triangulation has been made. The adaptation procedure involves mesh enrichment coarsening in regions of flow with high low gradients of flow properties, ac...
متن کاملNumerical Investigation on Compressible Flow Characteristics in Axial Compressors Using a Multi Block Finite Volume Scheme
An unsteady two-dimensional numerical investigation was performed on the viscous flow passing through a multi-blade cascade. A Cartesian finite-volume approach was employed and it was linked to Van-Leer's and Roe's flux splitting schemes to evaluate inviscid flux terms. To prevent the oscillatory behavior of numerical results and to increase the accuracy, Monotonic Upstream Scheme for Conservat...
متن کاملNumerical Simulation of the Hydrodynamics of a Two-Dimensional Gas—Solid Fluidized Bed by New Finite Volume Based Finite Element Method
n this work, computational fluid dynamics of the flow behavior in a cold flow of fluidized bed is studied. An improved finite volume based finite element method has been introduced to solve the two-phase gas/solid flow hydrodynamic equations. This method uses a collocated grid, where all variables are located at the nodal points. The fluid dynamic model for gas/solid two-phase flow is based on ...
متن کاملDevelopment of an Upwind Algorithm at Subsonic Regions in the Solution of PNS Equations
In this paper an upwind algorithm based on Roe’s scheme is presented for solution of PNS equations. Non iterative-implicit method using finite volume technique is used. The main advantage of this approach, in comparison with similar upwind methods, is reduction of oscillations around sonic line. This advantage causes the present method to be able to analyze supersonic flows with free stream Mac...
متن کامل